Measuring Competition in Regulation & Antitrust – Principles and Examples

Workshop on Effective Competition in Network Industries

Dr. Hans W. Friederiszick, ESMT CA Giessen, 27.5.2010

Editorial note: ESMT Competition Analysis has been renamed to E.CA Economics
Measuring Competition – Why?

• Defining competition without **defining a welfare measure** is meaningless:
 - firms bribing officials to win contracts may be considered cut-throat competition – but with disastrous welfare implications
 - ‘Protecting rivals’ policy standard results in complaint driven antitrust policy (may be ok in the field of state aid)

• **Simple measures** often **go wrong** or result in battles on market definition, distracting attention from the **REAL** issues
 - Number of firms, market shares, CR or HHI

• Hence, define an objective
 - Consumer welfare or total welfare
 - Productivity
 - Static or dynamic focus

• and then go for the **effects**!

• **Disclaimer**: In regulated industries number of firms, market share measures etc. are more meaningful. Here the (transitory) objective is market opening
Measuring Competition – Why?

• In antitrust cases measuring competition is carried out to understand the extend of rivalry between two firms, i.e. closest competitor analysis; evidence against coordinated effects
• This helps to understand the consequences of a merger, a collusive agreement or exclusionary conduct on competitors
• Typical analysis include:

 Price/ quality competition:
 − Switching analysis/ diversion ratios,
 − Critical loss analysis or recently UPP
 − Hedonic price regressions
 − Cross price elasticities
 − Bidding analysis

Dynamic competition
− Patent analysis, e.g. numbers, validity, scope/ breadth, blocking position
− Investment levels, e.g. strategic withdrawal of capacity

Methodology comprises descriptive analysis up to reasonably complex econometrics; reduced form vs. structural modeling/simulations
Agenda

Introduction

Measuring competition – endogeneity problem (example railway industry)

Measuring competition – dynamic effects (example pharmaceutical industry)

Some other problems and conclusion
Measuring Competition – Endogeneity Problem (Example Railway Industry)

- A general problem for measuring competition and its effects on market outcome is the endogeneity issue:
 - Market concentration, entry etc. affect prices, but prices also drive market structure
 - e.g. measuring the impact of local HHI on prices turns out to be negative
 - The same is true for regulatory measures
 - e.g. measuring the impact of access regulation on telecommunication investment becomes (negatively) significant only after controlling for reverse causality
- Generally solved by instrument variable approaches or quasi natural experiments (e.g. unexpected plant closure)
Example Railway Industry: Background and Motivation

• The EU Commission’s “Third Railways Package” foresees market opening of the European long-distance passenger rail sector after 2010

• European rail operators initiated or plan co-operations on long distance passenger transport

• There was concern that this co-operation would be anti-competitive

• DB argued that this concern was unfounded because inter-modal competition from low-cost airlines (“LCAs”) servicing long-distance destinations provided sufficient competitive pressure
Example Railway Industry: Our Assessment

- Examine effect of LCA entry and operation on DB
 - Prices
 - Passenger numbers

- Large, representative panel data set
 - With a rich set of controls

- Grapple with endogeneity
 - Standard panel data methods
 - IV methods accounting for the possibility that LCA entry is a strategic response to DB pricing
Example Railway Industry: Data Set

- **DB Data**
 - Average first and second class ticket prices
 - Passenger numbers
 - For long-distance O&Ds wherein either the origin or destination (or both) lies within Germany

mostat: 207 O&Ds observed over a period of 22 months from January 2006 to October 2007: 4554 O&D-month observations

- **LCA competition: press releases and airline contacts**
 - LCA entry and operation
 - LCA presence in 2006

- **Control variables**
 - Population & fuel cost data: Eurostat, Statistisches Bundesamt
 - Train type, railroad costs and track data: DB Trassenpreise; EICIS
 - Driving duration: Marco Polo Route planner 06/07
 - Number of airline seats and flights: Arbeitsgemeinschaft deutscher Verkehrsflughäfen (ADV)
 - Flight duration and delay: Association of European Airlines (AEA); ADV; Lufthansa
Example Railway Industry: Descriptive Statistics – LCA Entry during Observation Period

16% of full sample (207 O&Ds) experienced LCA entries between January 2006 and October 2007.
Example Railway Industry: Circumstantial Evidence of LCA Entry

Effect on passenger numbers (second class) due to LCA entry in May 2007

Entry of LCA
Example Railway Industry: Panel Data Analysis – Model

Econometric model:

\[y_{it} = \delta LCA_{it} + \gamma z_{it} + \lambda_t + \varepsilon_{it} \]

Where:

- \(i \): a given O&D pair
- \(t \): time
- \(y_{it} \): dependent variable, logarithm of
 - (i) passenger numbers (lpax), (ii) average ticket price (lavprice), (iii) revenue (lrev), (iv) passenger-kilometres (lpkm)
 - first class and second class
- \(LCA_{it} \): dummy variable equal to 1 in the period of entry and subsequent operation for those routes which experienced LCA entry over our observation period
- \(\delta \): key indicator of the analysis: long-term percentage change of \(y \) because of LCA entry
- \(z \): vector of control variables
- \(\lambda_t \): control variable for seasonal effects
- \(\varepsilon_{it} \): the error term
Example Railway Industry: Panel Data Analysis – Endogeneity of Entry

- LCA entry is a strategic decision
 1. Entry \rightarrow lower price (negative relation/correlation between entry and prices)
 2. High price \rightarrow entry of LCA (positive relation/correlation between entry and prices)

- We are interested to identify effect 1

- In order to correctly support an antitrust analysis, the empirical methodology must account for this endogeneity and separate the effects!
 - We use instrumental variables
 - Instruments is the number of LCAs operating into or out of the destination (origin), to or from a city other than the origin (destination) corresponding to O&D i at time t.
Example Railway Industry: Effect of LCA Entry – Summary of Results

- **Passengers - second class**
 - Statistically and economically significant negative effect on passenger numbers
 - 7%-17% decrease of passenger numbers, depending on dataset

- **Passengers - first class**
 - Negative effect on passenger numbers less pronounced
 - Up to 18%, depending on dataset

- **Prices**
 - Strategic entry is important
 - *After* accounting for strategic entry (endogeneity), LCA entry results in significantly lower prices in both the first and second class. Price effects vary between 16% and 27%
Example Railway Industry: Conclusions

Policy conclusion

- LCAs induce substantial competitive pressure
- Competitive pressure can be observed in first and second class and has an effect on both passenger numbers and prices
- Intermodal competition has to be part of a competitive assessment of future rail alliances

General Issues

- “Simple” treatment effect approach (see Angrist/ Pischke 2010)
- But ex post assessment: what do we learn for the world post liberalization?
Agenda

Introduction

Measuring Competition – endogeneity problem (example railway industry)

Measuring competition – dynamic effects (example pharmaceutical industry)

Some other issues and conclusion
Measuring Competition – Dynamic Effects (Example Pharmaceutical Industry)

• Many areas of competition policy involve **ex post assessment**
 – Abuse of dominant position cases (102 TFEU)
 – Horizontal agreements (101 TFEU)

• But what about areas which involve an **ex ante assessment**:
 – Merger assessments
 – State aid cases
 – Or implications of regulatory measures on infrastructure investment?

• Here a major issue is how to measure **the implications of measures taken today on the future**

• One approach are **simulation techniques**
Example Pharmaceutical Industry: Pharmaceutical Innovation and Pricing Regulation

- In the context of healthcare cost-containment efforts, pharmaceutical products are increasingly subject to strict pricing and reimbursement conditions in many European countries and likely the U.S.

- Relatively little attention has been paid to the (potentially adverse) consequences that pricing and reimbursement regulation may have on pharmaceutical innovation:
 - affects on the number and characteristics of drugs that will be launched in the market in the future?
 - Tension between the global nature of pharmaceutical innovation and the national nature of pricing regulation?

- We set out to evaluate the effect of pricing regulation on innovation in the pharmaceutical industry by performing policy experiments in the context of a (semi-) dynamic decision tree model.
Example Pharmaceutical Industry: Development process: Costly, long-lasting, and risky process

- Phase I
- Phase II
- Phase III

Therapeutic Area 1
Therapeutic Area 2
... Therapeutic Area N

Highly innovative project
Other project

Cluster of highly innovative projects
Lead highly innovative project
Back-up highly innovative projects
Example Pharmaceutical Industry: Selected Pricing and Reimbursement Regulatory Schemes in Europe

<table>
<thead>
<tr>
<th>Country</th>
<th>External Price Benchmarking</th>
<th>Internal Reference Pricing</th>
<th>Value-Based Pricing</th>
<th>Other Schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czech Republic</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td>X</td>
<td>X (not mandatory)</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Market-based pricing of highly innovative, on-patent, drugs</td>
</tr>
<tr>
<td>Hungary</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Risk sharing (conditional pricing)</td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td>X</td>
<td></td>
<td>Cost-plus price regulation</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td>X</td>
<td></td>
<td>Cost-plus price regulation</td>
</tr>
<tr>
<td>UK</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Pharmaceutical Price Regulation Scheme (PPRS) Risk sharing (conditional pricing)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Example Pharmaceutical Industry: Pricing Regulation Around the World

Regions and pricing regulation

Region A
- Internal Reference Pricing (IRP)

Region B
- External Price Benchmarking (EPB)

Region C
- Market-Based Pricing, Low Willingness to Pay

Region D
- Market-Based Pricing, High Willingness to Pay

\[P^I = \lambda \cdot P^F \]

\[P^E = \sum_{j \in \{A, C, D\}} w_j \cdot P_j \]
Example Pharmaceutical Industry: Drug Development
A Project’s Market Launch

• Net sales of a drug:

$$\max \left\{ \sum_{j \in \{A, B, C, D\}} \left(P_j - c \right) * Q_j \left(P_j \right), \sum_{j \in \{A, B, D\}} \left(\hat{P}_j - c \right) * Q_j \left(\hat{P}_j \right) \right\}$$

• Launch in Region C?
 - Trade-off between gaining net sales in Region C and losing net sales in Region B (EPB)
Example Pharmaceutical Industry: Policy experiments

...after solving the model and calibrating

<table>
<thead>
<tr>
<th>Policy Scenario</th>
<th>Market-Based Pricing</th>
<th>Internal Reference Pricing</th>
<th>External Price Benchmarking</th>
<th>Pricing Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of potential projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly innovative</td>
<td></td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Number of projects developed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly innovative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected number of projects launched</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly innovative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Highly innovative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of potential projects</td>
<td>46</td>
<td>74</td>
</tr>
<tr>
<td>Number of projects developed</td>
<td>32 30 29 26</td>
<td>54 49 51 45</td>
</tr>
<tr>
<td>Expected number of projects launched</td>
<td>13.98 12.92 12.68 11.38</td>
<td>21.94 20.15 20.64 18.61</td>
</tr>
</tbody>
</table>
Example Pharmaceutical Industry: Policy Experiments

Value of the selected portfolio

- As a result of Internal Reference Pricing, the value of the selected portfolio moves from USD 24,808m under Market-Based Pricing to USD 21,912m—a drop of 11.7%

- As a result of External Price Benchmarking, the value of the selected portfolio moves from USD 24,808m under Market-Based Pricing to USD 23,389m—a drop of 5.7%

- As a result of Pricing Regulation, the value of the selected portfolio moves from USD 24,808m under Market-Based Pricing to USD 19,904m—a drop of 19.8%
Example Pharmaceutical Industry: Conclusions

Policy conclusion

• Pricing and reimbursement regulation affects pharmaceutical innovation, by
 - Reducing the value of pharmaceutical projects and the resources available to carry them out
• The benefits of more affordable or cost-effective drugs must be traded against the costs of less pharmaceutical innovation
 - Fewer projects are developed in general
 - Different therapeutical areas will be developed

General Issues

- Specific model assumptions and calibration requirements
- Sensitivity analysis important
- But: forward looking and potentially this is the only way possible for quantification (see Nevo/Whinston 2010)
Agenda

Introduction

Measuring Competition – endogeneity problem (example railway industry)

Measuring competition – dynamic effects (example pharmaceutical industry)

Some other issues and conclusion
Some other issues and conclusion

- There are many complicating effects when measuring competition
 - Endogeneity and dynamics
 - Specific issues in regulated industries – prices are (partially) regulated
 - (Semi-)public firms with different objective function – social objectives, turnover maximization
 - Network effects and 2SM, etc.
- Within an adversarial environment there are is an trade-off between accuracy vs. practicality…
- …and who holds the information
- In general in Europe
 - An accepted canon of robust methods to measure competition exists (e.g. see Davis et al. 2010)
 - Economic assessment has identification power
 - Economic analysis has raised the standard of the competitive assessment to the benefit of competition policy
Thank you!

Hans W. Friederiszick
Managing Director, ESMT Competition Analysis

hans.friederiszick@esmt.org
+49 (0)30 21231 7010

ESMT Competition Analysis
Schlossplatz 1
10178 Berlin
Germany

Phone: +49 (0) 30 212 31-7009
Fax: +49 (0) 30 212 31-7099

CompetitionAnalysis@esmt.org
www.esmt.org
Literature

