

Measuring Competition in Regulation & Antitrust – Principles and Examples

Workshop on Effective Competition in Network Industries

Dr. Hans W. Friederiszick, ESMT CA Giessen, 27.5.2010

Editorial note: ESMT Competition Analysis has been renamed to E.CA Economics

Measuring Competition – Why?

- Defining competition without defining a welfare measure is meaningless:
 - firms bribing officials to win contracts may be considered cut-throat competition but with disastrous welfare implications
 - 'Protecting rivals' policy standard results in complaint driven antitrust policy (may be ok in the field of state aid)
- Simple measures often go wrong or result in battles on market definition, distracting attention from the REAL issues
 - Number of firms, market shares, CR or HHI
- · Hence, define an objective
 - Consumer welfare or total welfare
 - Productivity
 - Static or dynamic focus
- and then go for the effects!
- Disclaimer: In regulated industries number of firms, market share measures etc. are more meaningful. Here the (transitory) objective is market opening

Measuring Competition – Why?

- In antitrust cases measuring competition is carried out to understand the extend of rivalry between two firms, i.e. closest competitor analysis; evidence against coordinated effects
- This helps to understand the consequences of a merger, a collusive agreement or exclusionary conduct on competitors
- Typical analysis include:
- Price/ quality competition:
 - Switching analysis/ diversion ratios,
 - Critical loss analysis or recently UPP
 - Hedonic price regressions
 - Cross price elasticities
 - Bidding analysis
- Dynamic competition
 - Patent analysis, e.g. numbers, validity, scope/ breadth, blocking position
 - Investment levels, e.g. strategic withdrawal of capacity
- Methodology comprises descriptive analysis up to reasonably complex econometrics; reduced form vs. structural modeling/ simulations

Agenda

Introduction

Measuring competition – endogeneity problem (example railway industry)

Measuring competition – dynamic effects (example pharmaceutical industry)

Some other problems and conclusion

Measuring Competition – Endogeneity Problem (Example Railway Industry)

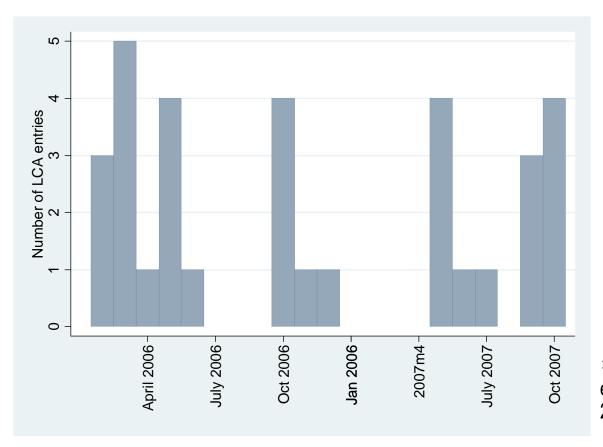
- A general problem for measuring competition and its effects on market outcome is the endogeneity issue:
 - Market concentration, entry etc. affect prices, but prices also drive market structure
 - e.g. measuring the impact of local HHI on prices turns out to be negative
 - The same is true for regulatory measures
 - e.g. measuring the impact of access regulation on telecommunication investment becomes (negatively) significant only after controlling for reverse causality
- Generally solved by instrument variable approaches or quasi natural experiments (e.g. unexpected plant closure)

Example Railway Industry: Background and Motivation

- The EU Commission's "Third Railways Package" foresees market opening of the European long-distance passenger rail sector after 2010
- European rail operators initiated or plan co-operations on long distance passenger transport
- There was concern that this co-operation would be anti-competitive
- DB argued that this concern was unfounded because inter-modal competition from low-cost airlines ("LCAs") servicing long-distance destinations provided sufficient competitive pressure

Example Railway Industry: Our Assessment

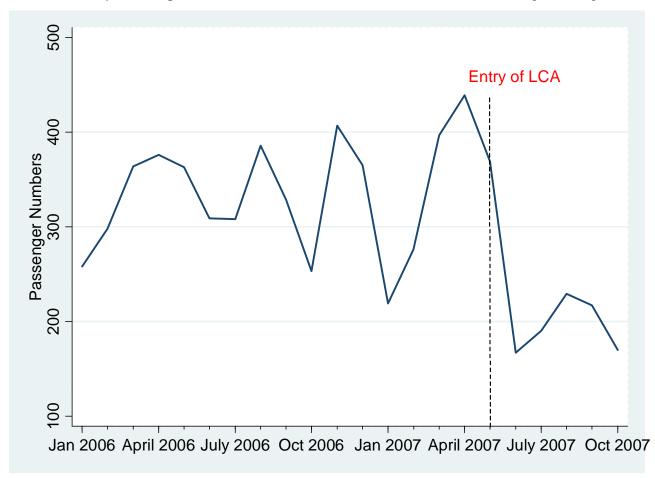
- Examine effect of LCA entry and operation on DB
 - Prices
 - Passenger numbers
- Large, representative panel data set
 - With a rich set of controls
- Grapple with endogeneity
 - Standard panel data methods
 - IV methods accounting for the possibility that LCA entry is a strategic response to DB pricing



Example Railway Industry: Data Set

- DB Data
 - Average first and second class ticket prices
 - Passenger numbers
 - For long-distance O&Ds wherein either the origin or destination (or both) lies within Germany
- ⇒ 207 O&Ds observed over a period of 22 months from January 2006 to October 2007: 4554 O&D-month observations
- LCA competition: press releases and airline contacts
 - LCA entry and operation
 - LCA presence in 2006
- Control variables
 - Population & fuel cost data: Eurostat, Statistisches Bundesamt
 - Train type, railroad costs and track data: DB Trassenpreise; EICIS
 - Driving duration: Marco Polo Route planner 06/07
 - Number of airline seats and flights: Arbeitsgemeinschaft deutscher Verkehrsflughäfen (ADV)
 - Flight duration and delay: Association of European Airlines (AEA); ADV; Lufthansa

Example Railway Industry: Descriptive Statistics – LCA Entry during Observation Period



⇒16% of full sample (207 O&Ds) experienced LCA entries between January 2006 and October 2007

Example Railway Industry: Circumstantial Evidence of LCA Entry

Effect on passenger numbers (second class) due to LCA entry in May 2007

Example Railway Industry: Panel Data Analysis – Model

Econometric model:

$$y_{it} = \delta LCA_{it} + \gamma \mathbf{z}_{it} + \lambda_t + \varepsilon_{it}$$

Where:

■ *i*: a given O&D pair

■ *t*: time

• y_{ii} dependent variable, logarithm of

- (i) passenger numbers (lpax), (ii) average ticket price (lavprice), (iii) revenue (lrev), (iv) passenger-kilometres (lpkm)

- first class and second class

LCA_{ii}: dummy variable equal to 1 in the period of entry and subsequent operation for those routes which experienced LCA entry over our observation period

• δ : key indicator of the analysis: long-term percentage change of y because of LCA entry

z: vector of control variables

λ_t: control variable for seasonal effects

• ϵ_{it} : the error term

Example Railway Industry: Panel Data Analysis – Endogeneity of Entry

- LCA entry is a strategic decision
 - Entry → lower price (negative relation/correlation between entry and prices)
 - 2. High price → entry of LCA (positive relation/correlation between entry and prices)
- We are interested to identify effect 1
- In order to correctly support an antitrust analysis, the empirical methodology must account for this endogeneity and separate the effects!
 - We use instrumental variables.
 - Instruments is the number of LCAs operating into or out of the destination (origin), to or from a city other than the origin (destination) corresponding to O&D / at time t.

Example Railway Industry: Effect of LCA Entry – Summary of Results

- Passengers second class
 - Statistically and economically significant negative effect on passenger numbers
 - 7%-17% decrease of passenger numbers, depending on dataset
- Passengers first class
 - Negative effect on passenger numbers less pronounced
 - Up to 18%, depending on dataset
- Prices
 - Strategic entry is important
 - <u>After</u> accounting for strategic entry (endogeneity), LCA entry results in significantly lower prices in both the first and second class. Price effects vary between 16% and 27%

Example Railway Industry: Conclusions

Policy conclusion

- LCAs induce substantial competitive pressure
- Competitive pressure can be observed in first and second class and has an effect on both passenger numbers and prices
- Intermodal competition has to be part of a competitive assessment of future rail alliances

General Issues

- "Simple" treatment effect approach (see Angrist/ Pischke 2010)
- But ex post assessment: what do we learn for the world post liberalization?

Agenda

Introduction

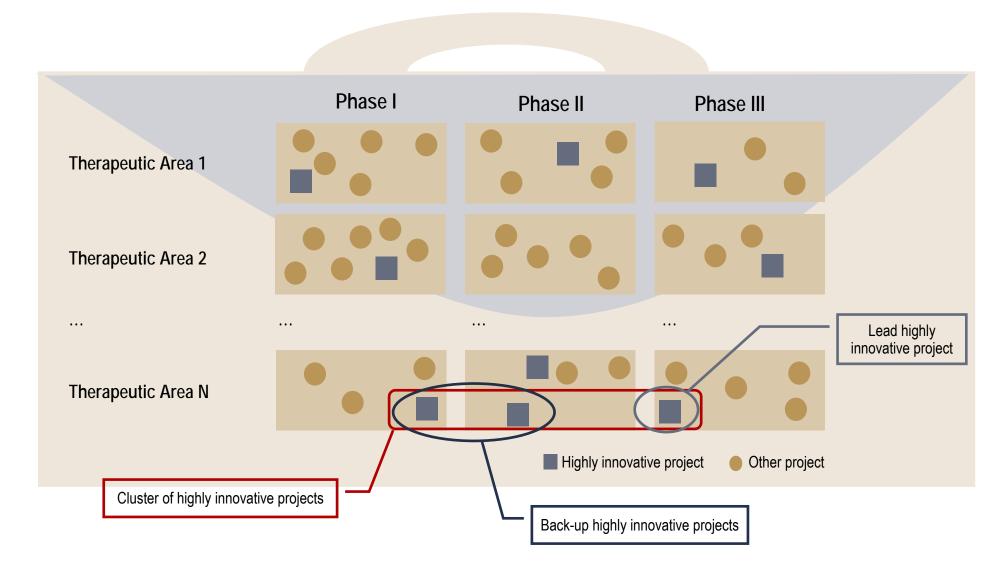
Measuring Competition – endogeneity problem (example railway industry)

Measuring competition – dynamic effects (example pharmaceutical industry)

Some other issues and conclusion

Measuring Competition – Dynamic Effects (Example Pharmaceutical Industry)

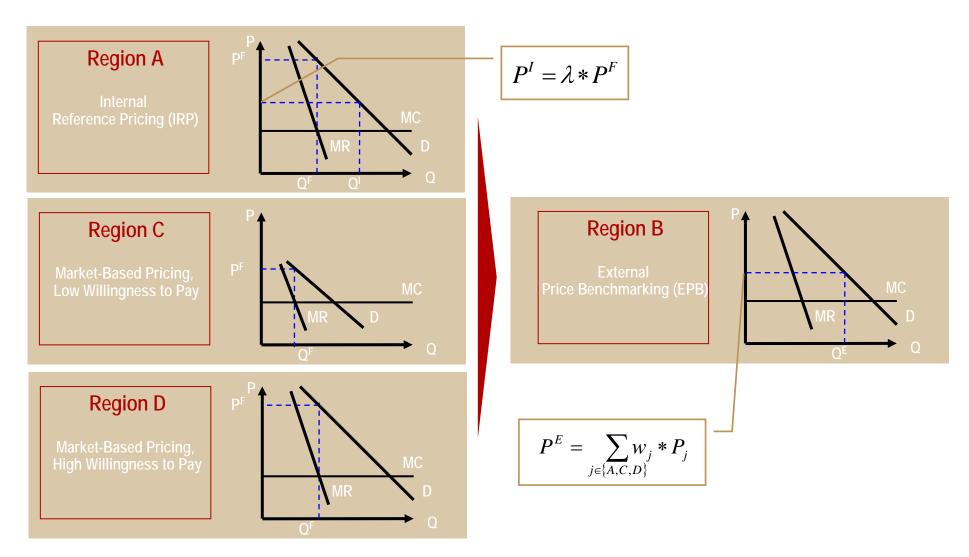
- Many areas of competition policy involve ex post assessment
 - Abuse of dominant position cases (102 TFEU)
 - Horizontal agreements (101 TFEU)
- But what about areas which involve an ex ante assessment:
 - Merger assessments
 - State aid cases
 - Or implications of regulatory measures on infrastructure investment?
- · Here a major issue is how to measure the implications of measures taken today on the future
- One approach are simulation techniques



Example Pharmaceutical Industry: Pharmaceutical Innovation and Pricing Regulation

- In the context of healthcare cost-containment efforts, pharmaceutical products are increasingly subject to strict pricing and reimbursement conditions in many European countries and likely the U.S.
- Relatively little attention has been paid to the (potentially adverse) consequences that pricing and reimbursement regulation may have on pharmaceutical innovation:
 - affects on the number and characteristics of drugs that will be launched in the market in the future?
 - Tension between the global nature of pharmaceutical innovation and the national nature of pricing regulation?
- We set out to evaluate the effect of pricing regulation on innovation in the pharmaceutical industry by performing policy experiments in the context of a (semi-) dynamic decision tree model

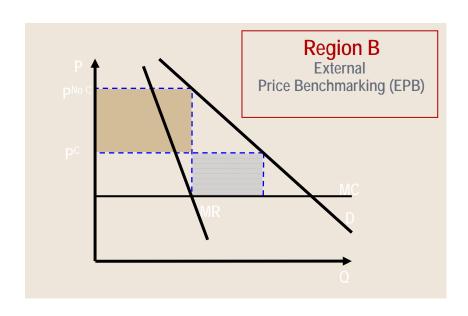
Example Pharmaceutical Industry: Development process: Costly, long-lasting, and risky process

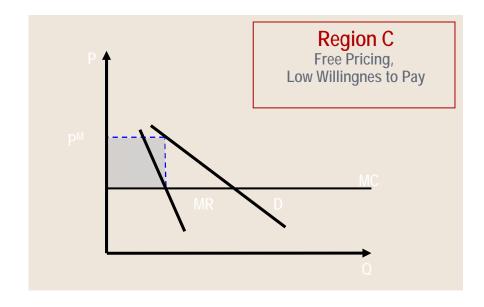

Example Pharmaceutical Industry: Selected Pricing and Reimbursement Regulatory Schemes in Europe

Country	External Price Benchmarking	Internal Reference Pricing	Value-Based Pricing	Other Schemes
Czech Republic	X	X		
Denmark		X	X (not mandatory)	
France	X	X		
Germany		x	X	Market-based pricing of highly innovative, on-patent, drugs
Hungary	X	X	X	
Italy		X		
Netherlands	Х	X	Х	Risk sharing (conditional pricing)
Poland		X		Cost-plus price regulation
Spain	X			Cost-plus price regulation
UK		X	X	Pharmaceutical Price Regulation Scheme (PPRS) Risk sharing (conditional pricing)

Source: OECD, 2008, Pharmaceutical pricing policies in a global market, Paris.

Example Pharmaceutical Industry: Pricing Regulation Around the World Regions and pricing regulation




Example Pharmaceutical Industry: Drug Development A Project's Market Launch

• Net sales of a drug:

$$\max \left\{ \sum_{j \in \{A,B,C,D\}} (\mathbf{P}_j - c) * \mathbf{Q}_j (\mathbf{P}_j), \sum_{j \in \{A,B,D\}} (\hat{\mathbf{P}}_j - c) * \mathbf{Q}_j (\hat{\mathbf{P}}_j) \right\}$$

- Launch in Region C?
 - Trade-off between gaining net sales in Region C and losing net sales in Region B (EPB)

Example Pharmaceutical Industry: Policy experiments ...after solving the model and calibrating

		Policy Scenario				
		Market-Based Pricing	Internal Reference Pricing	External Price Benchmarking	Pricing Regulation	
Number of potential projects	Highly innovative	46				
	Total	74				
Number of projects developed	Highly innovative	32	30	29	26	
	Total	54	49	51	45	
Expected number of projects launched	Highly innovative	13.98	12.92	12.68	11.38	
	Total	21.94	20.15	20.64	18.61	

Example Pharmaceutical Industry: Policy Experiments Value of the selected portfolio

- As a result of Internal Reference Pricing, the value of the selected portfolio moves from USD 24,808m under Market-Based Pricing to USD 21,912m—a drop of 11.7%
- As a result of External Price Benchmarking, the value of the selected portfolio moves from USD 24,808m under Market-Based Pricing to USD 23,389m—a drop of 5.7%
- As a result of Pricing Regulation, the value of the selected portfolio moves from USD 24,808m under Market-Based Pricing to USD 19,904m—a drop of 19.8%

Example Pharmaceutical Industry: Conclusions

Policy conclusion

- Pricing and reimbursement regulation affects pharmaceutical innovation, by
 - Reducing the value of pharmaceutical projects and the resources available to carry them out
- The benefits of more affordable or cost-effective drugs must be traded against the costs of less pharmaceutical innovation
 - Fewer projects are developed in general
 - Different therapeutical areas will be developed

General Issues

- Specific model assumptions and calibration requirements
- Sensitivity analysis important
- But: forward looking and potentially this is the only way possible for quantification (see Nevo/ Whinston 2010)

Agenda

Introduction

Measuring Competition – endogeneity problem (example railway industry)

Measuring competition – dynamic effects (example pharmaceutical industry)

Some other issues and conclusion

Some other issues and conclusion

- There are many complicating effects when measuring competition
 - Endogeneity and dynamics
 - Specific issues in regulated industries prices are (partially) regulated
 - (Semi-)public firms with different objective function social objectives, turnover maximization
 - Network effects and 2SM, etc.
- Within an adversarial environment there are is an trade-off between accuracy vs. practicality...
- ...and who holds the information
- In general in Europe
 - An accepted canon of robust methods to measure competition exists (e.g. see Davis et al. 2010)
 - Economic assessment has identification power
 - Economic analysis has raised the standard of the competitive assessment to the benefit of competition policy

Thank you!

Hans W. Friederiszick Managing Director, ESMT Competition Analysis

<u>hans.friederiszick@esmt.org</u> +49 (0)30 21231 7010 **ESMT Competition Analysis**

Schlossplatz 1 10178 Berlin Germany

Phone: +49 (0) 30 212 31-7009 Fax: +49 (0) 30 212 31-7099

CompetitionAnalysis@esmt.org www.esmt.org

Literature

- Angrist, Joshua D. and Jörn-Steffen Pischke (2010): The Credibility Revolution in Empirical Economics: How Better Research Design is Taking the Con out of Econometrics, *Journal of Economic Perspectives*, 24, 2, 3–30.
- Davis, Peter and Eliana Garcés(2010): Quantitative Techniques for Competition and Antitrust Analysis, Princeton University Press (2010).
- Friederiszick, H. W., Gantumur, T., Jayaraman, R., Röller, L.-H., and Weinmann, J. (2009). *Railway Alliances in EC Long-Distance Passenger Transport: A Competitive Assessment Post-Liberalization 2010.* ESMT White Paper No. WP–109–01.
- Friederiszick, H. W., Tosini, N., de Véricourt, F., and Wakeman, S. (2009). *An Economic Assessment of the Relationship between Price Regulation and Incentives to Innovate in the Pharmaceutical Industry*. ESMT White Paper No. WP–109–03.
- Friederiszick, H. W. and Röller, L.-H. (2010). *Quantification of Harm in Damages Actions for Antitrust Infringements: Insights from German Cartel Cases.* ESMT Working Paper No. 10-001.(forthcoming JCLE)
- Nevo, Aviv and Michael D. Whinston (2010): Taking the Dogma out of Econometrics: Structural Modeling and Credible Inference, *Journal of Economic Perspectives*, 24, 2, 69-82.